报告题目:Zero-viscosity limit of the Navier-Stokes equations in thin domain
报告人:王超
报告时间:2023年5月21日9:15-9:50
报告地点:数学与统计学院四楼会议室
报告摘要:In this talk, we talk about the hydrostatic approximation for the Navier-Stokes system in a thin domain. When the convex initial data with Gevrey regularity of optimal index 3/2 in x variable and Sobolev regularity in y variable, we justify the limit from the anisotropic Navier-Stokes system to the hydrostatic Navier-Stokes/Prandtl or Euler system. Due to our method in the paper is independent of viscous coefficient, by the same argument, we also get the hydrostatic Navier-Stokes/Prandtl system is well-posedness in the optimal Gevrey space.
报告人简介:王超,北京大学数学科学学院研究员,博士毕业于中科院数学院,曾在巴黎第七大学从事博士后研究工作。研究兴趣为流体力学方程组,主要集中在水波方程,可压缩N-S方程等方向,相关成果发表在Comm. Pure Appl. Math., Mem.Amer.Math.Soc., Arch.Ration.Mech.Anal.等国际著名数学期刊上。